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Abstract

For the stationary one-dimensional nonlinear Schrödinger equation (or Gross–
Pitaevskii equation), nonlinear resonant transmission through a finite number of
equidistant identical barriers is studied using a (semi-)analytical approach. In
addition to the occurrence of bistable transmission peaks known from nonlinear
resonant transmission through a single quantum well (respectively a double
barrier), complicated (looped) structures are observed in the transmission
coefficient which can be identified as the result of symmetry breaking similar to
the emergence of self-trapping states in double-well potentials. Furthermore, it
is shown that these results are well reproduced by a nonlinear oscillator model
based on a small number of resonance eigenfunctions of the corresponding
linear system.

PACS numbers: 03.65.−w, 03.750.Lm, 42.65.Pc

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The transport properties of Bose–Einstein condensates (BECs) in (quasi-)one-dimensional
waveguides are of considerable current interest, both experimentally and theoretically. Atom–
chip experiments are particularly well suited to study the influence of interatomic interaction
on the transport properties of BECs in waveguides since various waveguide geometries can be
realized by different methods [1–10].

A convenient theoretical approach is based on the one-dimensional Gross–Pitaevskii
equation (GPE) or nonlinear Schrödinger equation (NLSE):

ih̄ψ̇(x, t) =
(

− h̄2

2m

d2

dx2
+ g|ψ(x, t)|2 + V (x)

)
ψ(x, t), (1)
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which describes the dynamics in a mean-field approximation at low temperatures [11–14]. The
nonlinear term g|ψ(x, t)|2 models the interaction between the condensate particles. Another
important application of the NLSE is the propagation of electromagnetic waves in nonlinear
media (see, e.g., [15, chapter 8]). The ansatz ψ(x, t) = exp(−iμt/h̄)ψ(x) reduces (1) to the
corresponding time-independent NLSE

(
− h̄2

2m

d2

dx2
+ g|ψ(x)|2 + V (x) − μ

)
ψ(x) = 0 (2)

with the chemical potential μ.
Within this framework resonant transport through single well (respectively double barrier)

structures has been studied using analytical and numerical approaches [16–18]. It was found
that due to the nonlinearity of equation (2) the barrier transmission coefficient in dependence
on the chemical potential μ shows bistable resonance peaks which can be related to nonlinear
metastable (Siegert) resonance states of the barrier potential and described by means of a
nonlinear generalization of the Lorentzian profile occurring in linear transmission problems
[17, 19]. These studies correspond to the barrier tunnelling of coherent monochromatic matter
waves with a given chemical potential μ that are injected into the waveguide from a BEC
reservoir. In the articles cited above, it was shown that the results obtained from the stationary
NLSE (2) are in excellent agreement with the numerical solutions of the time-dependent
NLSE

ih̄ψ̇(x, t) = − h̄2

2m
ψ ′′(x, t) + V (x)ψ(x, t) + g|ψ(x, t)|2ψ(x, t) + f0 exp(−iμt/h̄)δ(x − x0)

(3)

where the coupling to a reservoir is modelled by the source term f0 exp(−iμt/h̄)δ(x − x0)

located at some position x = x0 on the left-hand side of the barrier (i.e. in the upstream
region), emitting monochromatic matter waves at the chemical potential μ. In contrast to the
linear case these results cannot be straightforwardly used to predict the scattering behaviour
of an arbitrary wavepacket since the superposition principle is no longer valid.

On the other hand, double-well potentials have been considered in a number of theoretical
and experimental papers (see e.g. [20–28]). In such systems one observes the onset of
symmetry breaking and the emergence of new solutions in addition to the solutions with linear
counterpart for a critical value of the nonlinearity. These results strongly motivate a study of
related effects in the context of resonant transmission through structures consisting of more
than one well (or more than two barriers, respectively) where one expects the occurrence of
both bistability and symmetry breaking. The limiting case of resonant transport in infinitely
extended periodic structures has also been of recent interest (see, e.g. [29–31]). The occurrence
of looped Bloch bands is one of the major effects of nonlinearity in these systems. Transport
through a finite number of delta barriers was considered in [32]; however, focusing on different
aspects like the superfluidity of the condensate flow. In this paper we thus intend to fill a gap by
considering nonlinear resonant tunnelling through a finite sequence of n identical equidistant
barriers. For the linear Schrödinger equation transmission through such a multi-barrier or
truncated periodic potential has been investigated in a number of theoretical papers motivated
by both experiments with multilayered semiconductor heterostructures and fundamental issues
like their relationship with infinitely extended periodic potentials. The particular systems
treated in the literature include analytically solvable potentials like sequences of rectangular
[33, 34] or delta-function barriers [34–36].
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In the following we consider resonant transmission for the stationary one-dimensional
NLSE (2) with the potential:

V (x) = h̄2

m
λ

n−1∑
j=0

δ(x − jd) (4)

consisting of n identical delta-function barriers with distance d and strength h̄2λ/m with λ > 0.
This paper is organized as follows. In section 2 we briefly discuss transmission through

the barrier (4) for the linear case (g = 0). In section 3 we introduce a semi-analytical method
for calculating the transmission coefficient for piecewise constant potentials which is applied
to the case of double, triple, quadruple and quintuple barrier tunnelling in section 4. In section
5 these results are compared with the predictions of a nonlinear oscillator model. Additional
material concerning computational details is presented in an appendix.

2. Multi-barrier transmission in the linear limit

In this section we briefly discuss transmission through the barrier potential (4) for the linear
Schrödinger equation, i.e. equation (2) with g = 0. Using the transfer matrix technique,
Griffiths and Taussig [35] have proven that the transmission coefficient for n delta barriers is
given by

|Tn(μ)|2 = [
1 + (λ/k)2U 2

n−1(z)
]−1

(5)

with k = √
2mμ/h̄,

z = cos kd + (λ/k) sin kd (6)

and the Chebyshev polynomials Un(z) of the second kind generated by the recurrence relation

Un+1(z) = 2zUn(z) − Un−1(z) (7)

starting with U0(z) = 1 and U1(z) = 2z. Note that for any given value of z with −1 < z < 1
equation (6) yields infinitely many solutions k (respectively μ). The resonant chemical
potentials μR where |Tn(μR)|2 = 1 can be determined by solving the transcendental equation
(6) with the roots

zl = cos(lπ/n), l = 1, . . . , n − 1, (8)

of the Chebyshev polynomial Un−1(z). Since Un(z) has n zeros, |T1|2 has no resonances
and the resonances of |Tn|2 with n � 2 occur in groups of multiplicity n − 1. Because of
l/n = (νl)/(νn) with ν = 1, 2, . . . we see from equation (8) that any resonance of |Tn|2 is
also a resonance of |Tν·n|2. This result can be understood in an intuitive way by decomposing
a series of ν · n identical single barriers into a series of ν groups consisting of n barriers. The
simplest example is given by a quadruple barrier that can be decomposed into two double
barriers. An incoming plane wave with a chemical potential μn=2,l=1 that is in resonance
with the double barriers remains an incoming plane wave after passing the first double barrier
so that it can also pass the second double barrier in the same manner. Thus the quadruple
barrier is transparent at μn=2,l=1 = μn=4,l=2. This argument still holds in the case of a finite
interaction strength g �= 0.

By means of a Taylor expansion of the denominator in equation (5) the transmission
coefficient in the vicinity of a resonance with the chemical potential μ = μn,l can be written
as a Lorentzian (cf e.g. [33])

|Tn(μ)|2 ≈
[

1 +
(μ − μn,l)

2

�2
n,l

/
4

]−1

= �2
n,l

/
4

(μ − μn,l)2 + �2
n,l

/
4

(9)
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Figure 1. Transmission coefficients |Tn|2 in dependence on the chemical potential μ for
n = 2, 3, 4, 5 and the parameters λ = 10, d = 2, g = 0.

where

�n,l = 2

[
λ

k

dUn−1(z)

dz

dz

dμ

]−1 ∣∣∣∣
μ=μn,l

(10)

= 2 sin2(lπ/n)

[
λ

k
((n + 2)zUn − (n + 1)Un+1)

dz

dμ

]−1 ∣∣∣∣
μ=μn,l

(11)

is the full width of the peak at half maximum. The factor sin2(lπ/n), which varies more
strongly in dependence on l than the term in the brackets, indicates that within a group of
resonances the peaks in the middle are broader than the peaks at the sides.

Figure 1 shows the transmission coefficients for n = 2, 3, 4, 5 for the potential (4) with
λ = 10, d = 2 where units with h̄ = m = 1 are used as in all figures and numerical calculations
in this paper. Only the first two groups of resonances are shown. It can be verified that the
positions of the two lowest resonance peaks of |T2|2 coincide with the positions of the second
and fifth resonance peak of |T4|2 respectively as predicted above.

The groups of resonances and the regions of (almost) zero transmittivity in between
correspond to the energy bands and bandgaps of an infinitely extended delta-comb (or Kronig-
Penney) potential, respectively (see e.g. [35] and references therein).
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3. Transfer map approach

Because of the nonlinearity of the GPE the transmission coefficient in the interacting case
g �= 0 can no longer be obtained by the transfer matrix technique. Instead we introduce a
method which we call the transfer map approach. To this end we make use of an amplitude
phase decomposition

ψ(x) =
√

S(x) exp(i�(x)), (12)

which yields the relation

�′(x) = jtm

h̄S(x)
(13)

between the density S(x), the derivative of the phase �′(x) and the density of the total
probability current jt. For given values of jt and μ the transfer map is supposed to map
the density S(x̃) and its derivative S ′(x̃) given at some position x̃ on the right-hand side
of the barrier region onto the corresponding quantities S(x) and S ′(x) at some position x
on the left-hand side of the barrier region.

In order to obtain the transfer map of the potential (4) we first consider the case of a
constant potential V (x) = V0 in which an analytical solution for the density S(x) is given by
(cf [37, 38])

S(x) = ε + ϕ dn2(�x + δ|p). (14)

Using the abbreviation u = �x + δ the derivative of S(x) and its square are given by

S ′(x) = −2�ϕp sn(u|p) cn(u|p) dn(u|p) (15)

and, by means of the addition theorems of the Jacobian elliptic functions [39],

S ′2(x) = 4ϕ2�2[(p − 1) dn2(u|p) + (2 − p) dn4(u|p) − dn6(u|p)]. (16)

The parameters in (14) must satisfy

�2 = −gmϕ/h̄2 (17)

μ − V0 = 3
2gε + 1

2gϕ(2 − p) (18)

mjt + (p − 1)gϕ2ε − 2(μ − V0)ε
2 + 2gε3 = 0. (19)

Equation (18) can be rewritten as

ϕ2(p − 1) = ϕ2 +

(
3ε − 2(μ − V0)

g

)
ϕ. (20)

Combining equations (20) and (19) we obtain a quadratic equation for ϕ :

ϕ2 +

(
3ε − 2(μ − V0)

g

)
ϕ +

mj 2
t

gε
+ 2ε2 − 2(μ − V0)

g
ε = 0 (21)

with the solutions

ϕ± = −
(

3

2
ε − μ − V0

g

)
±

√(
3

2
ε − μ − V0

g

)2

− 2ε2 +
2(μ − V0)

g
ε − mj 2

t

gε
(22)

for g > 0 (+) and g > 0 (−), respectively. Suppose the values of S(x̃) and S ′(x̃) are known
at some position x = x̃. The Jacobian elliptic function dn(ũ|p) can be expressed as

dn2(ũ|p) = (S(x̃) − ε)/ϕ (23)

5
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with ũ = �x̃ + δ. Thus equation (16) at x = x̃ can be written as

−h̄2S ′(x̃)2

4gm
= ϕ2(p − 1)(S(x̃) − ε) + (2 − p)ϕ(S(x̃) − ε)2 − (S(x̃) − ε)3. (24)

Using equation (18) to eliminate ϕ in (24) we finally arrive at the cubic equation

ε3 − 2(μ − V0)

g
ε2 +

(
h̄2S ′2(x̃)

4gmS(x̃)
+

mj 2
t

gS(x̃)
+

2(μ − V0)

g
S(x̃) − S2(x̃)

)
ε − mj 2

t

g
= 0, (25)

the real solution of which is ε. Now that we know ε the value of ϕ follows from equation (22).
From equations (17) and (18) we furthermore obtain

� = √−gmϕ/h̄ and p = 2 − 2(μ − V0) − 3gε

gϕ
. (26)

Now the only quantity that remains to be computed is the phase δ of the Jacobi elliptic
function. This can be obtained by numerically solving equation (23) at x = x̃. However, it is
more efficient to use the addition theorems

sn(�x + δ|p) = sn(v|p) cn(ũ|p) dn(ũ|p) + sn(ũ|p) cn(v|p) dn(v|p)

1 − p sn2(ũ|p)sn2(v|p)
(27)

cn(�x + δ|p) = cn(v|p) cn(ũ|p) − sn(v|p) dn(v|p) sn(ũ|p) dn(ũ|p)

1 − p sn2(ũ|p) sn2(v|p)
(28)

dn(�x + δ|p) = dn(v|p) dn(ũ|p) − p sn(v|p) cn(v|p) sn(ũ|p) cn(ũ|p)

1 − p sn2(ũ|p) sn2(v|p)
(29)

instead, where v = �(x − x̃) and ũ = �x̃ + δ. In order to apply these addition theorems the
values of the Jacobian elliptic functions at x = x̃ are required. The Jacobian function dn(ũ|p) is
given by equation (23) and the remaining functions can be computed via cn(ũ|p) = cos(am ũ)

and sn(ũ|p) = sin(am ũ) where

am ũ = ± arcsin
(√

1 − dn2(ũ|p)/p
)

(30)

is the so-called amplitude of the Jacobian elliptic functions. The sign must be chosen such
that sgn(sin(am ũ) cos(am ũ)) = sgn(−S ′(x̃)/ϕ) = sgn(sn(ũ|p) cn(ũ|p) dn(ũ|p)). Thus for
given values of μ − V0 and jt equations (14), (15), (22) and (25)–(30) define a map

Uμ−V0,jt ,x̃−x : (S(x̃), S ′(x̃)) �−→ (S(x), S ′(x)), (31)

which we call the transfer map of the constant potential V (x) = V0. The matching condition
for the wavefunction ψ(x) and its derivative ψ ′(x) at the position x0 of a delta potential with
the strength h̄2λ/m is given by ψ ′(x0−) = ψ(x0+) and ψ ′(x0−) = ψ ′(x0+) − 2λψ(x0).
Straightforward algebra shows that these conditions read

S(x0−) = S(x0+) and S ′(x0−) = S ′(x0+) − 4λS(x0) (32)

in terms of S(x) = |ψ(x)|2 and its derivative. This leads to the map

Dλ : (S, S ′) �−→ (S, S ′ − 4λS) (33)

for the delta potential with strength h̄2λ/m. Thus we obtain the transfer map

Mn = (
DλUμ,jt ,d

)n−1Dλ (34)

of the potential (4) with V0 = 0.

6
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For a stationary scattering state the solution in the region x > (n − 1)d, i.e. on
the right-hand side of the potential barriers, is given by a plane wave C exp(ikCx) with
kC =

√
2m(μ − g|C|2)/h̄ and the total current can be expressed as

jt = |C|2h̄kC/m. (35)

The probability density and its derivative on the right-hand side of the barriers are
S((n−1)d+) = |C|2 and S ′((n−1)d+) = 0. The transfer map (34) determines the probability
density and its derivative on the left-hand side of the barriers via

(S(0−), S ′(0−)) = Mn(|C|2, 0). (36)

For the parameters considered in this paper the mean-field interaction potential gS(x) outside
the potential is negligibly small compared to the chemical potential μ so that we can write the
wavefunction in the region x < 0 as a superposition A exp(ikx) + b exp(−ikx) of an incoming
and an outgoing plane wave. For the wavefunction ψ(0−) and its derivative ψ ′(0−) at x = 0
we thus obtain the condition

2ikA = ψ ′(0−) + ikψ(0−), (37)

with the incoming wave amplitude A and the wavenumber k = √
2mμ/h̄. In order to express

this condition in terms of S(0−) and S ′(0−) we multiply it by ψ∗(0−) arriving at

2ikψ∗(0−)A = ψ∗ψ ′(0−) + ik|ψ(0−)|2. (38)

Using S ′(0−) = ψ∗(0−)ψ ′(0−) + ψ∗′
(0−)ψ(0−) and

jt = −ih̄(ψ∗(0−)ψ ′(0−) − ψ∗′
(0−)ψ(0−))/(2m)

to replace the term ψ∗(0−)ψ ′(0−) in equation (38) we obtain

2ikψ∗(0−)A = S ′(0−)/2 + i(kC|C|2 + kS(0−)) (39)

where we have used equation (35) to replace jt. The absolute square of equation (39) provides
a convenient condition

4k2S(0−)2|A|2 = S ′2(0−)/4 + (kC|C|2 + kS(0−))2 (40)

for the wavefunction in the upstream region. For the parameter range considered in this paper
the approximation kC ≈ k = √

2mμ/h̄ can be made since the effective nonlinearity is small
outside the barrier region (cf the discussion above).

Numerically, for given values of μ and A the squared magnitude |C|2 of the outgoing
wave amplitude is obtained by solving the system (36), (40). This is achieved by combining
a bisection method with a finite grid for |C|2. The transmission coefficient is then given by
|T |2 = jt/jin ≈ |C|2/|A|2.

The transfer map (31) of the constant potential V (x) = V0 simplifies considerably in the
special case S ′(x̃) = 0 in which equation (25) reads

(ε − S(x̃))

[
ε2 +

(
S(x̃) − 2(μ − V0)

g

)
ε +

mj 2
t

gS(x̃)

]
= 0. (41)

Apart from the trivial solution S(x) = ε = const, ϕ = 0 this equation has the solutions

ε± =
(

μ − V0

g
− S(x̃)

2

)
±

√(
μ − V0

g
− S(x̃)

2

)2

− mj 2
t

gS(x̃)
(42)

for g > 0 (+) and g < 0 (−) respectively. For g < 0 equation (15) leads to (cf [18])

ϕ = S(x̃) − ε, (43)

7
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Figure 2. Transmission coefficient |T2|2 in dependence on the chemical potential μ for λ = 10,
d = 2, A = 0.1. Left panel: g = 0 (solid blue line), g = 0.005 (black dots), g = 0.1 (red dots).
Right panel: g = 0 (solid blue line), g = −0.05 (black dots), g = −0.1 (red dots).

for g > 0 it yields S(x̃) = ε + ϕ(1 − p) and finally, together with equation (26),

ϕ = 2(μ − V0)

g
− 2ε − S(x̃). (44)

The phase shift is given by

δ = −�x̃(g > 0) or δ = K(p) − �x̃(g < 0) (45)

(cf [18]).
In the following section the transfer map approach is applied to double, triple, quadruple

and quintuple barrier tunnelling.

4. Nonlinear multi-barrier transmission

4.1. Double barrier

Using the transfer map approach described in the previous section we compute the transmission
coefficient |T2|2 in dependence on the chemical potential μ for the potential (4) with n = 2
barriers, potential strength λ = 10, distance d = 2 (cf figure 1) and an incoming amplitude
A = 0.1 which is displayed in figure 2 for several values of the interaction parameter g.
We obtain the familiar behaviour for nonlinear single well/double-barrier tunnelling (see e.g.
[16, 18, 19, 40]). For g > 0, the peaks are shifted to higher chemical potentials due to the
repulsive mean-field term g|ψ(x)|2 in the GPE. The wavefunctions of the linear (g = 0) system
corresponding to resonant transmission |T |2 ≈ 1 are more strongly affected by the mean-field
term than those corresponding to off-resonant transmission because they have a greater total
norm

∫ d

0 dx|ψ(x)|2 inside the well. Thus the maximum of a peak experiences a stronger shift
than its flanks so that the peak bends more and more to the right for increasing nonlinearity
g, leading to bistability. Analogously a peak bends to the left for an attractive interaction
g < 0. In other words, in some parameter regions there exist states with the same chemical
potential but with different average numbers of particles inside the well corresponding to
different values of the transmission coefficient. The transmission coefficient is thus subject to
a hysteresis effect as the system has a memory given by the average number of particles inside
the well. As an example we consider a transmission coefficient for repulsive nonlinearity
as shown in the left panel of figure 2 for g = +0.1 (red). Let us assume that the system is

8
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Figure 3. Transmission coefficient |T3|2 in dependence on the chemical potential μ for λ = 10,
d = 2, A = 0.1. Upper left panel: g = 0 (solid blue line), g = 0.017 (black dots), g = 0.034
(red dots). Upper right panel: g = 0.036 (black dots), g = 0.039 (red dots). Lower left panel:
g = 0.05 (black dots), g = 0.1 (red dots). Lower right panel: g = 0.25 (black dots), g = 0.5 (red
dots).

initially prepared in a transmission state corresponding to a chemical potential μ ≈ 1.1 on
the left-hand side of the bistable region. If the chemical potential μ of the incoming matter
wave is slowly increased the values of the transmission coefficient follow the upper curve in
figure 2 until the end of the bistable region is reached. Then the transmittivity ‘drops down’
and follows the only existing branch. This behaviour has been explicitly demonstrated in a
recent numerical study [41] for a double Gaussian barrier using the time-dependent description
given in equation (3).

4.2. Triple barrier

Figure 3 shows the transmission coefficient |T3|2 in dependence on the chemical potential
μ for the potential (4) with n = 3 barriers, potential strength λ = 10, distance L = 2 (cf
figure 1) and an incoming amplitude A = 0.1 for various positive values of the interaction
parameter g. For a moderately repulsive g the resonance peaks bend to the right as known
for the double barrier. This effect is slightly weaker for the second peak with larger chemical
potential μ than for the first one because the respective kinetic energy is higher in comparison
with the mean-field interaction energy (cf the discussion in [18]). For g ≈ 0.035 a narrow
loop which is not connected with the other branches of the transmission coefficient emerges
close to the second resonance peak. When g is further increased the second resonance and the
loop approach each other. During the process the second resonance peak is slightly deformed
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Figure 4. Squared magnitudes |ψ(x)|2 of wavefunctions corresponding the peak maxima in the
transmission coefficient of the triple barrier with λ = 10, d = 2, A = 0.1 and the nonlinearity
g = 0.036 (cf the black curve in the upper right panel of figure 3). Solid red: first maximum with
μ ≈ 1.12, |T |2 ≈ 1. Dashed dotted black: second maximum with μ ≈ 1.22, |T |2 ≈ 1. Dashed
blue: maximum of the looped structure with μ ≈ 1.23, |T |2 ≈ 0.95.

until the two structures collide and finally unite. A similar behaviour could be observed for
the transmission coefficient of the finite square well considered in [18]. There, the looped
structures originate from bound states which have been destabilized and thus turned into
resonances due to repulsive interaction. Here, the loop is formed by solutions without a linear
counterpart (so-called allochtonous solutions). By comparison with the double-barrier case
we can identify the emergence of unconnected loops as an effect of interaction between the
first two resonances of the system.

Figure 4 displays the squared magnitudes |ψ(x)|2 of the wavefunctions corresponding
to the peak maxima (respectively the looped structure) in the transmission coefficient of
the triple barrier with λ = 10, d = 2, A = 0.1 and the nonlinearity g = 0.036 (cf the
black curve in the upper-right panel of figure 3). The densities |ψ(x)|2 corresponding to the
two autochtonous states with maximum transmission (solid red and dashed dotted black) are
symmetric whereas the density corresponding to the maximum of the allochtonous loop with
|T |2 < 1 is asymmetric. Hence this state represents an example of symmetry breaking in a
nonlinear system similar to, e.g., the self-trapping states in double-well potentials (see e.g.
[20, 22, 25, 26, 28]).

For even higher values of g the transmission peaks in figure 3 bend more and more to the
right and the second resonance peak develops into a fork (double peak). Note that very narrow
structures are not always perfectly resolved because our implementation of the transfer map
approach uses a finite grid for the outgoing amplitude |C|2 (see section 3).

An analogous behaviour can be observed in figure 5 which shows the transmission
coefficient |T3|2 for the same potential as in figure 3 for negative values of g. Now the
curves bend to the left and the looped structure appears in the vicinity of the first resonance
peak.

4.3. Quadruple barrier

Now we consider the transmission coefficient |T4|2 in dependence on the chemical potential
μ for the potential (4) with n = 4 barriers, λ = 10, d = 2 and A = 0.1. Figure 6
displays |T4|2 for various values of g. As in the case of three barriers for positive interaction a
narrow structure which is not connected with the other branches of the transmission coefficient
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Figure 5. Transmission coefficient |T3|2 in dependence on the chemical potential μ for λ = 10,
d = 2, A = 0.1. Upper-left panel: g = 0 (solid blue line), g = −0.017 (black dots), g = −0.028
(red dots). Upper-right panel: g = −0.030 (black dots), g = −0.036 (red dots). Lower-left
panel:g = −0.05 (black dots), g = −0.09 (red dots). Upper-right panel: g = −0.15 (black dots),
g = −0.3 (red dots).

emerges on the right-hand side of the first group of resonances. In contrast to the triple-barrier
case, however, the maximum transmittivity within the newly created branch is |T4|2 ≈ 1.
For higher values of g the newly created branch unites with the third resonance peak. After
the unification the transmittivity in the vicinity of the third resonance peak no longer reaches
full transparency which is another difference to the case of three barriers. When g is further
increased more and more unconnected branches emerge. As for the triple barrier the situation
is completely analogous in the case of negative interaction. By comparing the respective
transmission coefficients for g = 0 and g = ±0.1 in figures 6 and 2 we can directly verify a
property predicted in section 2, namely that the position of the second resonance peak of the
quadruple barrier always coincides with the position of the first resonance peak of the double
barrier.

4.4. Quintuple barrier

Adding another delta function we arrive at the quintuple (n = 5) barrier with the parameters
λ = 10, d = 2 and A = 0.1 (cf figure 1). The respective transmission coefficient |T5|2
in dependence on μ is shown in figure 7 for several values of the interaction constant g.
Similar to the case of the quadruple barrier (figure 6) increasing g leads to the formation of an
unconnected structure on the right-hand side of the first group of resonances, its unification
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Figure 6. Transmission coefficient |T4|2 in dependence on the chemical potential μ for λ = 10,
d = 2, A = 0.1. Upper-left panel: g = 0 (solid blue line), g = 0.015 (black dots), g = 0.02 (red
dots). Upper-right panel: g = 0.04 (black dots), g = 0.1 (red dots). Lower-left panel: g = 0
(solid blue line), g = −0.01 (black dots), g = −0.02 (red dots) . Lower-right panel:g = −0.04
(black dots), g = −0.1 (red dots).

with the highest resonance within this group as well as to the emergence of more unconnected
branches. In addition, the second resonance peak of the group develops into a fork of
tree subpeaks. Again, the system reveals a completely analogous behaviour for attractive
interactions g < 0.

5. Nonlinear oscillator model

In [19, 40] it was shown that nonlinear resonant tunnelling can be understood in terms of
Siegert resonances, i.e. in the vicinity of a resonance the wavefunction ψ(x) of the system
is approximately given by a so-called skeleton wavefunction ψsk(x) which satisfies purely
outgoing (Siegert) boundary conditions and yields a complex eigenvalue μsk − i�sk/2. Thus
we only take into account the resonant contribution to transmission neglecting the non-resonant
contribution originating from sequential single-barrier tunnelling.

This approximation can be incorporated in the time-dependent description of nonlinear
resonant tunnelling mentioned in the introduction where a source term is used to model the
injection of an incoming coherent matter wave with the chemical potential μ. Inserting the
ansatz ψ(x, t) = exp(−iμt/h̄)ψsk(x) into equation (3) yields

(H0 − μ + g|ψsk(x)|2)ψsk(x) + if0δ(x − x0) = 0 (46)
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Figure 7. Transmission coefficient |T5|2 in dependence on the chemical potential μ for λ = 10,
d = 2, A = 0.1. Upper-left panel: g = 0 (solid blue line), g = 0.008 (black dots), g = 0.013 (red
dots). Upper-right panel: g = 0.02 (black dots), g = 0.05 (red dots). Lower-left panel: g = 0
(solid blue line), g = −0.02 (black dots), g = −0.01 (red dots). Lower-right panel: g = −0.04
(black dots), g = −0.1 (red dots).

where we have chosen a constant source strength f (t) = f0 located at some position x0 � 0.
In analogy to [28] we expand the skeleton wavefunction ψsk(x) in a Galerkin-type ansatz

ψsk(x) =
nB∑

j=1

cjuj (x) (47)

using the first nB eigenfunctions {uj } and respective eigenvalues {μj − i�j/2} of the linear
(g = 0) system

H0 = − h̄2

2m
∂2
x + V (x) (48)

with Siegert boundary conditions. The eigenfunctions are made square-integrable by means
of exterior complex scaling (see the appendix). To calculate the stationary states we insert
ansatz (47) into equation (46) and consider its projections

cj (μj − i�j/2 − μ) + g

∫ ∞

−∞
dx v∗

j (x)

∣∣∣∣∣
nB∑
i=1

ciui(x)

∣∣∣∣∣
2 nB∑

l=1

clul(x) + if0v
∗
j (x0) = 0 (49)

on the nB left eigenvectors {vj } of H0. The nB nonlinear equations (49), which determine the
nB coefficients {cj }, are solved with a Newton algorithm. Obviously all equations decouple
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in the noninteracting case g = 0. A system of nonlinear coupled oscillators similar to the
one described by equation (49) has been investigated in the context of micromechanical and
nanomechanical resonator arrays [42].

Since the transmission coefficient for a potential with n barriers shows groups of n − 1
resonances we use nB = n − 1 basis functions to compute the transmission coefficient in the
vicinity of the first group of resonances.

The source strength f 0 is connected with the incoming wave amplitude A via f0 =
h̄2ikA/m (cf [16, 19, 40]) with k = √

2mμ/h̄. For simplicity we choose x0 = 0. The
transmission coefficient is given by the solutions of (49) via

|T |2 = jt

jin
(50)

where

jt = − ih̄

2m
(ψ∗

skψ
′
sk − ψskψ

∗
sk

′
)|x=(n−1)d (51)

and jin = h̄k|A|2/m. In this resonance ansatz the system is described by a small number of
square integrable functions rather than by a continuum of distributions which can be favourable
in many situations. Another advantage lies in the fact that the stability of a stationary solution
can be analysed in a straightforward way (see below).

For illustration we have a closer look at the special case of a single mode, i.e. nB = 1 (and
thus n = nB + 1 = 2), which models tunnelling through a single well/double-barrier structure.
Equation (49) now reads

c1(μ1 − i�1/2 − μ) + gw11
11|c1|2c1 + if0v

∗
1(x0) = 0 (52)

with w11
11 = ∫ ∞

−∞ v∗
1(x)u∗

1(x)u1(x)u1(x) dx. The squared magnitude of equation (52)

|c1|2 = |f0|2|v1(x0)|2(
μ1 + gRe

(
w11

11

)|c1|2 − μ
)2

+
(
�1/2 + g Im

(
w11

11

)|c1|2
)2 (53)

provides a self-consistent equation for the occupation number |c1|2 of the basis function u1(x).
Note that, due to symmetry, |v1(x0)|2 = |u1(x0)|2 = |u1(d + |x0|)|2. By means of the Siegert
formula |u1(x0)|2 can be expressed in terms of the decay coefficient �1 via

�1/2 = h̄2k

m

|u1(x0)|2∫ d+|x0|
x0

dx |u1(x)|2
≈ h̄2k

m
|u1(x0)|2 (54)

with
∫ d+|x0|
x0

dx|u1(x)|2 ≈ 1 and k = √
2mμ/h̄. In order to express equation (53) in terms of

|T |2 = jt/jin instead of |c1|2 we evaluate the current density jt at x = d + |x0| which yields
jt = h̄k

m
|u1(x0)|2|c1|2. Using equation (54) we obtain jt = h̄|c1|2�1/2. The transmission

coefficient is thus given by

|T |2 = jt

jin
= m�1

2h̄2k|A|2 |c1|2. (55)

Using equations (54), (55) and |f0|2 = h̄4k2|A|2/m equation (53) can be written as

|T |2 = �2
1

/
4

(μ − μsk)2 + �2
sk

/
4

(56)

with the skeleton curves

μsk(|T |2) = μ1 + g Re
(
w11

11

)2|A|2h̄2k

m�1
|T |2 (57)
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Figure 8. Transmission coefficient |T2|2 in dependence on the chemical potential μ for λ = 10,
d = 2, A = 0.1. Left panel: g = 0.05. Right panel: g = −0.05. The stability predictions of the
transfer map approach are indicated by black dots, the results of the nonlinear oscillator model by
blue asterisks (stable regions) and red circles (unstable regions).
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Figure 9. Upper panels: transmission coefficient |T3|2 in dependence on the chemical potential μ

for λ = 10, d = 2, A = 0.1. Left: g = 0.0366. Right: g = 0.1. The results of the transfer map
approach are indicated by black dots, and the stability predictions of the nonlinear oscillator model
by blue asterisks (stable regions) and red circles (unstable regions). Lower panels: corresponding
occupation numbers of the ground mode |c1|2 (solid blue line) and the first excited mode |c2|2
(dashed red line).
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Figure 10. Upper panels: transmission coefficient |T3|2 in dependence on the chemical potential
μ for λ = 10, d = 2, A = 0.1. Left: g = −0.03. Right: g = −0.09. The results of the transfer
map approach are indicated by black dots, the stability predictions of the nonlinear oscillator model
by blue asterisks (stable regions) and red circles (unstable regions). Lower panels: corresponding
occupation numbers of the ground mode |c1|2 (solid blue line) and the first excited mode |c2|2
(dashed red line).

�sk(|T |2)/2 = �1/2 + g Im
(
w11

11

)2|A|2h̄2k

m�1
|T |2. (58)

For small values of Im(w11
11 we can make the approximation �1 ≈ �sk in the numerator of

equation (56) arriving at the nonlinear Lorentz profile

|T |2 ≈ �2
sk

/
4

(μ − μsk)2 + �2
sk

/
4

(59)

derived in [19, 40]. Here the skeleton curves (57) and (58) are given in first-order
approximation in |T |2.

In order to perform a linear stability analysis of a stationary solution ψsk we insert
ψ(t) = (ψsk + δψ(t)) exp(−iμt/h̄) into equation (3) and retain only terms linear in δψ . The
spectral decomposition δψ(t) = χ− exp(−iωt)+χ∗

+ exp(iω∗t) then leads to the Bogoliubov–de
Gennes equations

h̄ω

(
χ−
χ+

)
=

(
HGP + g|ψsk|2 − μ gψ2

sk

−gψ∗
sk

2 −H ∗
GP − g|ψsk|2 + μ

) (
χ−
χ+

)
(60)
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Figure 11. Upper panels: transmission coefficients in dependence on the chemical potential μ for
λ = 10, d = 2, A = 0.1. Left: |T4|2 for g = 0.03. Right: |T5|2 for g = 0.05. The results of
the transfer map approach are indicated by black dots, the stability predictions of the nonlinear
oscillator model by blue asterisks (stable regions) and red circles (unstable regions). Lower panels:
corresponding occupation numbers of the ground mode |c1|2 (thin blue line), first |c2|2 (dashed
red line), second |c3|2 (dashed dotted black line) and third excited mode |c4|2 (bold green line).

with HGP = H0 + g|ψsk|2. Instability occurs if there are eigenmodes with positive imaginary
part since their population grows exponentially in time. The eigenvalue equation (60) is solved
in the dual basis {uj } and {vj }.

In figures 8–11 we compare the predictions of the nonlinear oscillator model with the
results of the transfer map approach for different numbers of barriers and interaction constants.
In all cases the agreement between both methods is quite good. Within the nonlinear oscillator
approach branches which are not connected to the main part of the transmission coefficient
prove difficult to find numerically and are therefore not taken into account. The stability
predictions for the double barrier (figure 8) agree with the results expected for a single
parametrically driven nonlinear classical oscillator (see e.g. [43]) or quantum oscillator in
the classical (mean-field) limit [44]. This is also in agreement with recent numerical results
for a double Gaussian barrier [41] where the dynamical stability of the upper branch of the
transmission is explicitly demonstrated by means of a time-dependent simulation. For more
than two barriers the model predicts an increasingly complicated distribution of stable and
unstable regions. The occupation numbers {|cj |2} of the modes {uj } shown in the lower
panels of figures 9–11 indicate that the autochtonous branches of the respective transmission
coefficients are mainly described by one mode only whereas the allochtonous branches are
formed by superpositions of two or more modes.
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6. Conclusion

In this paper we considered nonlinear resonant tunnelling through sequences of n identical and
equally spaced delta barriers. The stationary transmission states were calculated by means
of a transfer mapping approach based on the complex solutions of the free time-independent
NLSE given by Jacobi elliptic functions. As observed for single well/double-barrier tunnelling
(see [16, 18]) the nonlinearity renders the transmission coefficient bistable in the vicinity of
a resonance. In addition, looped structures appear, which are not connected with other
branches of the transmission coefficient. If the interaction parameter g is further increased
these structures unite with the main part of the transmission coefficient through an inverse
beak-to-beak bifurcation. A similar effect was observed in the transmission coefficient of
the finite square well (see [18]) for branches of the transmission coefficient originating from
bound states of the linear (g = 0) system destabilized by interaction. Increasing the number of
barriers and the nonlinearity leads to the emergence of more and more complicated structures
in the transmission coefficient which result in a suppression of resonant transport.

Comparison with a finite basis calculation based on the resonance wavefunctions of
the linear system shows that the effects described above can be understood in terms of
nonlinear parametrically driven coupled oscillators. The finite basis approach also offers a
straightforward way to analyse the stability of different branches of the transmission coefficient
by solving the corresponding Bogoliubov–de Gennes equations.
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Appendix. Left and right resonance eigenfunctions in the linear limit

The nonlinear oscillator approach in section 5 requires the computation of the resonance
eigenfunctions u(x) and corresponding eigenvalues μ − i�/2 of the Hamiltonian H0 given
in equation (48) with the potential V (x) = (h̄2/m)λ

∑n−1
j=0 δ(x − jd) given in equation (4)

which are obtained by solving the stationary Schrödinger equation(
− h̄2

2m
∂2
x + V (x)

)
u(x) = (μ − i�/2)u(x) (A.1)

with Siegert boundary conditions. We make the ansatz

u(x) =
⎧⎨
⎩

exp(−ikx) x < 0
Ij sin(kjd + ϑj ) (j − 1)d � x < jd, 0 < j < n − 1
exp(ikx) x � (n − 1)d

(A.2)

with k = √
2m(μ − i�/2)/h̄ which satisfies the Siegert boundary conditions

limx→±∞ u′(x) = ±ik u(x). The matching conditions at x = 0 and x = (n − 1)d read

1 = I1 sin(ϑ1), −ik = kI1 cos(ϑ1) − 2λ (A.3)

and

kIn−1 cos(ϑn−1) = ik − 2λ. (A.4)

At x = jd, 0 < j < n − 1 we obtain

Ij sin(kjd + ϑj ) = Ij+1 sin(kjd + ϑj+1) , (A.5)
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kIj cos(kjd + ϑj ) = kIj+1 cos(kjd + ϑj+1) − 2λIj sin(kjd + ϑj ). (A.6)

These equations are solved numerically for the complex quantities k, ϑj and Ij, 0 < j < n.
The wave function u(x) diverges for x → ∞ since Im(k) < 0. Therefore, we use

exterior complex scaling (see e.g. [45, 46]) to make the wavefunction square integrable. The
x coordinate is rotated by an angle θc from the point where the potential V (x) becomes zero.
In our case this reads

x →
⎧⎨
⎩

x exp(iθc) x < 0
x x � 0 � (n − 1)d

(n − 1)d + (x − (n − 1)d) exp(iθc) x > (n − 1)d.

(A.7)

In the scaled region the Schrödinger equation becomes exp(2iθc)u
′′(x) + k2u(x) = 0. The

matching conditions (A.3) and (A.4) remain unaltered. For a sufficiently large rotation angle
θc the wavefunction u(x) becomes square integrable in 0 � x < ∞.

Since H0 is symmetric, the corresponding left eigenfunctions v(x) are given by v(x) =
(u(x))∗. We normalize the eigenstates such that

∫ ∞
0 dx v∗(x)u(x) = 1.
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[23] Gati R, Hemmerling B, Fölling J, Albiez M and Oberthaler M K 2006 Phys. Rev. Lett. 96 130404
[24] Gati R, Esteve J, Hemmerling B, Ottenstein T B, Appmeier J, Weller A and Oberthaler M K 2006 New J.

Phys. 8 189
[25] Theocharis G, Kevrekidis P G, Frantzeskakis D J and Schmelcher P 2006 Phys. Rev. E 74 056608
[26] Khomeriki R, Leon J, Ruffo S and Wimberger S 2007 Theor. Math. Phys. 152 1122
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